Professional Custom Writing Services By Skilled Graduate Writers

Place an order for your academic papers, assignments and study assistance. Our reliable paper writing service and research assignment help online ensures timely delivery of high-quality essays, answers, analysis and presentations, tailored to your specific course needs and requirements.

Neurodegeneration in Parkinson’s Disease: Unraveling the Pathophysiological Cascade

Posted: June 6th, 2021

Neurodegeneration in Parkinson’s Disease: Unraveling the Pathophysiological Cascade
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain (Cheng et al., 2010). This results in a deficiency of dopamine in the striatum, leading to the cardinal motor symptoms of PD including bradykinesia, rigidity, resting tremor, and postural instability (Dauer & Przedborski, 2003). While the motor symptoms are the clinical hallmark of PD, non-motor symptoms including cognitive impairment, psychiatric disturbances, autonomic dysfunction, and sensory abnormalities also occur (Chaudhuri & Schapira, 2009).
The precise mechanisms underlying neurodegeneration in PD remain unclear, but accumulating evidence points to a complex interplay between genetic and environmental risk factors that converge upon common pathogenic pathways (Schapira et al., 2017). Oxidative stress, mitochondrial dysfunction, protein aggregation, neuroinflammation, and impaired protein degradation have all been implicated in the pathophysiology of PD (Dauer & Przedborski, 2003; Surmeier et al., 2017). It is now recognized that neurodegeneration in PD likely results from a cascade of events involving both neuronal cell-intrinsic mechanisms and non-cell autonomous processes (Surmeier et al., 2017).
At the cellular level, oxidative stress and mitochondrial dysfunction are thought to play a central role in PD pathogenesis (Schapira et al., 2017). Dopaminergic neurons are particularly vulnerable to oxidative stress due to dopamine metabolism and mitochondrial dysfunction (Surmeier et al., 2017). Oxidative damage to macromolecules, including lipids, proteins and DNA, can trigger a cascade of events leading to neuronal dysfunction and death if not properly repaired (Dauer & Przedborski, 2003). Mitochondrial dysfunction leads to impaired ATP production, calcium dysregulation, and increased generation of reactive oxygen species (ROS), further exacerbating oxidative stress (Schapira et al., 2017).
Protein aggregation, particularly of α-synuclein, is another key pathogenic mechanism in PD (Cheng et al., 2010). α-Synuclein is the primary component of Lewy bodies and Lewy neurites, the pathological hallmarks of PD (Spillantini et al., 1997). While the normal function of α-synuclein remains unclear, its aggregation into oligomeric and fibrillar forms is neurotoxic and may spread between neurons, contributing to the progressive nature of PD (Surmeier et al., 2017). α-Synuclein aggregation is thought to impair multiple cellular processes including mitochondrial function, vesicle trafficking, and proteostasis (Cheng et al., 2010).
Neuroinflammation characterized by the activation of microglia and astrocytes is also implicated in PD pathogenesis (Hirsch & Hunot, 2009). Post-mortem studies show evidence of increased pro-inflammatory cytokines and reactive microglia in the substantia nigra of PD patients (McGeer & McGeer, 2008). Microglial activation may be triggered by protein aggregates, oxidative stress, and neuronal damage/death (Hirsch & Hunot, 2009). In turn, neuroinflammation can exacerbate oxidative stress and neurotoxicity through the release of pro-inflammatory mediators (Hirsch & Hunot, 2009; McGeer & McGeer, 2008). This neuroinflammatory response is believed to contribute to the progressive nature of neurodegeneration in PD.
In summary, neurodegeneration in PD results from a complex interplay between genetic and environmental factors that converge upon common pathogenic mechanisms including oxidative stress, mitochondrial dysfunction, protein aggregation, and neuroinflammation (Schapira et al., 2017; Surmeier et al., 2017). These cellular processes interact in a vicious cycle to drive neuronal dysfunction and death through both cell-intrinsic and non-cell autonomous pathways (Surmeier et al., 2017). Unraveling the precise temporal and spatial relationships between these pathogenic events represents an important goal for advancing our understanding and treatment of PD.
References
Cheng, H., et al. (2010). “Mitochondrial trafficking and anchoring achieved by combined action of glial cell line-derived neurotrophic factor and dopamine supports tyrosine hydroxylase expression in neurons: Implications for Parkinson’s disease.” Journal of Biological Chemistry, 285(12), 9078-9090. https://doi.org/10.1074/jbc.M109.077036
Dauer, W., & Przedborski, S. (2003). “Parkinson’s Disease: Mechanisms and Models.” Neuron, 39(6), 889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
Hirsch, E. C., & Hunot, S. (2009). “Neuroinflammation in Parkinson’s disease: a target for neuroprotection?.” The Lancet Neurology, 8(4), 382-397. https://doi.org/10.1016/S1474-4422(09)70062-6
McGeer, P. L., & McGeer, E. G. (2008). “Glial reactions in Parkinson’s disease.” Movement disorders: official journal of the Movement Disorder Society, 23(4), 474-483. https://doi.org/10.1002/mds.21727
Schapira, A. H., Chaudhuri, K. R., & Jenner, P. (2017). “Non-motor features of Parkinson disease.” Nature Reviews Neuroscience, 18(7), 435-450. https://doi.org/10.1038/nrn.2017.62
Spillantini, M. G., et al. (1997). “α-Synuclein in Lewy bodies.” Nature, 388(6645), 839-840. https://doi.org/10.1038/42166
Surmeier, D. J., et al. (2017). “The role of calcium and mitochondrial dysfunction in the etiology and progression of Parkinson’s disease.” Movement disorders: official journal of the Movement Disorder Society, 32(6), 885-891. https://doi.org/10.1002/mds.26932

Tags: Australia dissertation writers, Australia essays, best essay writers pinterest, do my university assignment for me

Expert paper writers are just a few clicks away

Place an order in 3 easy steps. Takes less than 5 mins.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00

Why choose us, the 'writing bishops'?

Each Student Wants High Quality and That’s Our Focus

Skilled Essay Writers

An online hub of writing bishops' experts. We select the best qualified writers to join our team. These writers are recruited based on their college graduation grades, exceptional writing skills and ability to convey complex ideas in a clear manner. They each have expertise in specific topic fields and background in academic writing. This expertise enables them to provide well-researched and informative content that meets the highest standards.

Affordable Prices

In appreciation of the fact that our clients are majorly college and university students, we offer the lowest possible pricing while still providing the best writers. This approach ensures that our clients receive high-quality content and best coursework grades without breaking the bank. Our costs are fair and reasonable compared to other custom writing services in the market. As a result of maintaining the balance between affordability and quality, we have established ourselves as a reliable choice in the industry.

100% Plagiarism-Free

You will never receive a final paper that contains any plagiarism or AI use similarity index. Our team of professional writers and editors is dedicated to ensuring the originality of all content. We scan every final draft before releasing it to be delivered to a customer for submission in safeassign and turnitin. This rigorous process guarantees that the work meets the highest standards of academic integrity.